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In this note we present relatively short and simple proofs for some theorems
concerning superpositions offunctions. We prove in particular the well known
theorem of Kolmogorov [8], and its generalization due to Ostrand [10].

Our main observation is that by combining a general duality argument of
functional analysis with the ideas introduced by Lorentz [9] and Hedberg [5],
we obtain a better understanding of the nature of these theorems, and can
avoid some of the difficulties which arose in former proofs.

We use the notation of [3]. C(X) is the Banach space of real valued
continuous functions on the compact metric space X, with the norm
lin = SUPXEX If(x)l· We identify the dual C(X)* of C(X) with the space of
real regular Borel measures on X with the total variation as norm. f-L+
(resp. f-L-) denotes the positive (resp. negative) part of the real measure f-L,

and I f-L j = f-L+ + f-L-. Clearly

II f-L Ii = Ii I f-L III = f-L+(X) + f-L-(X), (1)

If T is a continuous function which maps X onto some (compact metric)
space Y, and f-L E C(X)*, then f-L 0 T is the element of C(Y)* defined by

VC Y. (2)

We denote the interval [0, 1] by I, the n dimensional cube by In, and the
circle by T. dim X is the covering dimension of X.

DEFINITION 1. Let X be a compact metric space. Let F be a family of
continuous functions on X. We say that F uniformly separates the Borel
measures on X if there exists a constant '\, 0 < ,\ :(; 1, such that for each
fL E C(X)*, II fL 0 Til?' ,\ II fL II for some T E F.

Let us say a word about the intuitive meaning of this concept: ifF uniformly
separates the Borel measures on X, and HI , H 2 are disjoint closed subsets of
X, then for some cp E F the intersection cp[HI ] r. cp[H2 ] is "not too large,"
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where "not too large" depends on A, and on a measure p, in C(X)* such that
HI, H 2 are the supports of p,-\ p,- respectively. In particular a family of
functions which uniformly separates Borel measures, separates points.
(Given Xl =1= X2in X, apply the definition to p, = 0" - 0", .) The converse is

1 2

false: let X = 12, let F = {9?1' 9?2} where 9?l(X, y) = X and 9?2(X, y) = y.
Clearly F separates points, but for p, = 8(0.0) + 0(1.1) - 0(0.1) - 0(1,0) we
have II p,11 = 4, and II p, ° 9?i II = 0, i = 1,2. i.e. Fdoes not uniformly separate
Borel measures. See [12] where this concept as well as related topics are
studied.

The connection between uniform separation and superpositions is given
in the following.

THEOREM 1. Let F = {9?i}~=l be a finite family ofcontinuous functions on a
compact metric space X, with 9?i[X] = Y i , 1 ~ i ~ k. The family F uniformly
separates the Borel measures on X ifand only ifeachfE C(X) can be represented
as

k

f(x) = L gi(9?i(X»
i=1

(3)

with gi E C(Yi), 1 ~ i ~ k.

Proof. Let Y denote the disjoint union of the Y/s, 1 ~ i ~ k. Consider
the bounded linear operator S: C(Y) ---+ C(X) defined by

k

Sg(x) = L g(epi(X»,
i=1

g E C(Y), XEX. (4)

A routine check shows that the adjoint s* ofS acts according to the formula

and that

k

S*p, = L P,°9?i,
i=l

P, E C(X)*, (5)

k

II S*p,11 = L II p, ° 9?iII.
i~1

(6)

Each f E C(X) admits a representation of the form (3) if and only if S maps
C(Y) onto C(X). This occurs if and only if S* is an isomorphism into, i.e.,
there exists a constant ex > °such that II S*p,11 ~ ex II p,11 for all p, E C(X)*
(see [3]).

By 6 this is equivalent to F being uniformly separating Borel measures
on X. I
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A very simple illustration of an application of Theorem 1 is

THEOREM 2. There exists three real valued analytic functions {g:>iJ;~1 on the
circle T, such that each fE C(T) can be represented as J(t) = L~~1 g;(9?i(t»
with gi E C(I).

(See Kahane [6)for a similar result. The number three in Theorem 2 cannot be
reduced as proved in [11).)

Proof We realize T as the interval I with its endpoints identified. Set

and

Ji = TVi'

13 = (1, 1) (Open intervals)

i = 1,2,3.

(7)

(8)

Let 9?i , i = 1, 2, 3 be any three elements of C(T) such that 9?ilJi is one to
one. (9?iIJi is the restriction of 9?i to Ji ; the same notation will be used later
for measures.) We claim that F = {9?iJt1 uniformly separates the Borel
measures on T, with A = t.

Indeed, let Ik E C(T)* be of norm one. Then Ilk! is a probability measure,
and it is easily seen that

(9)

since L~~i IJ/t) ?' 2 for all t E T. (lJ; is the indicator function of Ji .) It
follows that 1 Ik 1(Ji ) ?' i for some io , 1 < io < 3. Thus, IIIk 0 (9?i IJi )11 ?' io 0 0

since 9?io is one to one on J io •

Clearly I Ik 1 (Ii) < t, hence, the mass of 1L which is outside Ji ,can reduceo 0

the norm of 1L 0 (9?i IJi ) by at most t, i.e.,o 0

Thus F uniformly separates the Borel measures on T with A = t, and the
theorem follows from Theorem I. I

The proofs of the theorems of Kolmogorov and Ostrand require more
machinery. We start with some more definitions.

DEFINITION 2. (a) A family U of subsets of a metric space X is said to be
discrete if its elements have mutually disjoint closures.

(b) 8(U) is SUP'flEU diameter 0/1.

(c) If 9? is a function on X, we say that 9? separates U if for each
01'1,01'2 E u, 9?[0/I1] (') 9?[OJ/2) = 0.
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(d) If U1, U2 , ••• , Uk are k families of subsets of X we say that {Ui}~=1

covers the set X n times (n ~ k) if each x E X is an element in some member
of Ui for at least n values of i.

The following are trivial observations. (We do not distinguish between Ui

and the union of its elements.)

PROPOSITION 1. Let X be a set, and let {Ui }7=1 be k families ofsubsets ofX.
The statements (a), (b), (c), (d) are equivalent and imply (e).

(a) {Ui}tl covers X n times.

(b) Each k - n + I of the families {Ui }~=1 cover X.
Ie

(c) Li=1 I ui(x) ~ n for all x E X.

(d) L:=1 p.(Ui) ~ n for all probability measures p. on X.

(e) For each probability measure p. on X there exists some io , 0 ~ io~ k,
so that p.(Ui ) ~ nlk.o

LEMMA 1. Let X be a compact metric space, and let F = {CPi}~=1 be a
family of continuous functions on X. lffor each E > 0, there exists k finite
discrete families U1 , U2 , ... , Uk ofsubsets of X so that

(i) {Ui}~=1 covers X [ ~] + I times,

(ii) o(Ui ) < E, 1 ~ i ~ k,

(iii) CPi separates Ui , 1 ~ i ~ k.

Then F uniformly separates the Borel measures on X with ,\ = 11k.

Proof We wish to show that for each p. E C(X)*, II p. 0 CPi II ~ (Ilk) II p.11
for some CPi E F. The measures p. with p.+ and p.- having disjoint supports are
norm dense in C(X)*, (by regularity) and therefore we may consider such
measures only.

So let p. E C(X)* be of norm one, and with supp p.+ ('\ supp p.- = 0. Let
E = d(supp p.+, supp fC), and let {Ui}~=1 be the families of sets corresponding
to E.

It follows that a member of Ui , 1 ~ i ~ k cannot intersect both supp p.+
and supp p.+.

By (i) and Proposition I(e), there exists 1 ~ io ~ k so that

(II)
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Now, since members of Uio intersect at most one of the sets supp p.+ and
supp p.-, and since by (iii), f{Ji separates Vi ,it follows from (11) that

o 0

(12)

Clearly by (11)

(13)

Hence, by the same reasoning as in the proof of Theorem 2, we get from
(12) and (13) that

(14)

i.e., F uniformly separates the Borel measures on X with ,\ = Ilk. I

By Proposition I, condition (i) of Lemma 1 is equivalent to the following:
any [(k + 1)/2] of the families Vi cover X. Such a cover by [(k + 1)/2]
families Vi is of order [kI2] (i.e., at most [kI2] + 1 of its elements intersect).
It follows that the existence of families {Vi}L with (i) and (ii) of Lemma I
for each E > 0 implies that dim X :'( [kI2]. Ostrand [10] proved the following
converse assertion.

THEOREM 3. Let X be an n-dimensional compact metric space, let k ;?:

n + 1, and E > O.
There exist k discrete families {V;}~~l of subsets of X which cover X k - n

times, so that o(Vi) < E, 1 :'( i :'( k.

Our next lemma proves the existence of functions {f{Ji}LI as in the assump
tion of Lemma 1, if we are given a suitable sequence of nice coverings of X.
We shall do this in a more general setting which will be used later on.

LEMMA 2. Let Xi' j = 1,2,... , L be compact metric spaces and let
X = Xl X X 2 X ... X XL .

For each 1 :'( j :'( L let {Vmi}:~l be a sequence of discrete families of
subsets of Xi with O(Vmi) -m~oo O.

Let Vm , m = 1,2,... be the family of subsets of X defined by

(15)
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and let AI' A2 ,... , AL be reals independent over the rationals. There exist
functions Ti E C(Xj), 1 ~ j ~ L such that the function cp E C(X) defined by

L

cp(xl , X2 ,... , XL) = L AjT;(X;)
i~l

separates Umfor infinitely many m's.
1f Xl = X2 = = XL and Urr? = Um2 = ... = UmL then one can also

take Tl = T2 = = TL .

Proof Set C = C(Xl) x qx2) x .. , x qxL) with the norm
II (Tl , T2 ,... , TL)II maxl";i,,;L II Tj II·

For each integer t ~ 1 let At C C be defined by

At = l(Tl,T2 ,... , TL): cp(x1 'X2 ,... , XL) = itl AjT;(Xi)

separates Um for some m ~ t~. (16)

We claim that At is open and dense in C for all t ~ 1.

At is open: Let T = (Tl' T2,... , TL) E At, i.e. cp = L~~lAjT;(Xj) separates Um for
some m ~ t.

E = inf'fl..rEu...d(cp [0/1] , cp[.r]) is positive since Urn is discrete. Let S > 0
be so small that II T - T' lie < S implies II cp - cp'llew < Ef2 where
cp'(Xl , X2 ,... , XL) = L~~l AiT;(X;) E C(X). Then cp' separates Um too, i.e.,
T' EAt.

At is dense: Let if; = (if;l' if;2 ,... , if;L) E C and E > 0 be given.
We shall construct TEAt with II T - if; II < E.

Let m ~ t be so big that the oscillation of if;i on elements of Umi is smaller
than E for alII ~ j ~ L. Such an m exists since S(Umi) -+m-.oo O.

Let Tj be defined as follows: Tj is constant on elements of Umi, these
constants being distinct rationals so that II TifUmi - if;jfUmi II < E. This being
possible by the above choice of m, we extend Ti to the whole of Xi by Tietze's
theorem so that II Ti - if;i II < E. Then clearly II T - if; II < E where T =
(Tl' T2 ,... , TL)' We claim that TEAt. Indeed, let 0/1 = 0111 X 0212 X ... X

OlIL E Um , with OlIi E Umi and Ti[OlIi] = ri-the rational value of Ti on the
element OlIi of Umi.

If cp(xl , X2 ,... , XL) = L~~l AiT;(Xi)' then cp attains the constant value
L:~~l Ajrj on 011. But all the reals L~~l Airj are distinct, since the A/S are inde
pendent over the rationals, and the values of Ti on members of Umi are distinct
rationals. It follows that cp separates Um , i.e., TEAt.

Let A = n;~l At. By the Baire category theorem A is a dense Ga in C, and
each T = (Tl' T2 ,... , TL) E A has the desired property.
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If Xl = X 2 = ... = XL and Uml = Um2 = ... = UmL the same arguments
can be applied with the sets At C eeXl ), At = {T E C(Xl): g>(xl , X2 , ••• , XL) =
L~~l AjT(Xj) separates Um for some m ~ t}. This proves Lemma 2. I

Remark. If Xl = X2 = ... = XL = I, (i.e., X = In) and the elements of
Uml = Um2 = ... = UmL are intervals then one can extend the T/S from Umj
to I by letting them being linear on the intervals in the complement of Umj,
provided the length of these complementing intervals tends to 0 together
with the intervals in Umj. (This will be the case in our proof of Kolmogorov's
theorem.)

Moreover: C(Xj) = C(I) can be replaced in this case by Lip,,{I), 0 < 0: < 1,
i.e., the T/S can be chosen to be (nondecreasing) Lip 0: functions. (See [5].)

gi E C(R).

KOLMOGOROV'S THEOREM. Let n ~ 2. There exist functions ifii' i = 1,
2, ... , 2n + 1 in C(I) and reals Al , A2 , ... , An such that each f E C(In) can be
represented as

2n+l (n )
f(xl , X2 , ••• , xn) = i~l gi j~l Ajifii(Xj) ,

Proof Set k = 2n + 1. For each m, consider a partition of I into m
intervals of length 11m each, indexed from 1 to m by the natural order (i.e.,
the first is [0, 11m] and the last [em - I)lm, 1]). Let Vm.i , 1 :s;; i :s;; k be the
family of intervals generated by removing from I those intervals of the above
partition with index congruent to i mod k. (All intervals in Vm,i' except the
two extreme ones, are oflength (k - I)lm, and for each m, {Vm.i}Ll covers I
k - 1 times.)

Set Um.i = {II X 12 X ... X In: Ij E Vm,i}' 1 :s;;; i :s;; k. It is easy to check
that {Um.i}7~1 covers In, k - n = [kI2] + 1 times.

Let {,\j};=i independent over the rationals (e.g., Aj = ei-l). By Lemma 2
there exists functions ifii in eel), 1 :s;; i :s;; k and a subsequence {mr};"..l of the
integers such that g>i(Xl, X2 , ... , xn) = L;~l Ajljli(Xj) E C(In) separates Um"i
for r = 1,2,.... By Lemma 1, {g>i}:=l uniformly separates the Borel measures
on In, and the theorem follows from Theorem 1. I

OSTRAND'S THEOREM. Let X = Xl X X2 X '" X XL where Xj is a
compact metric space ofdimension nj , 1 :s;; j :s;; L. Let n = L~~l nj .

I. There exists functions Nu}7:t\ 1 :s;; j :s;; L in C(Xj) such that each
f E eeX) can be represented as

gi E C(R).withf(Xl' X2 , ... , xd = 2i~1 gi ct ifiu(xj»)

II. If Xl = X2 = ... = XL' then one can take ifii.J = \ifii where
{Aj}7~1 are reals independent over the rationals.
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Proof Set k = 2n + 1. For each m ~ 1 let U~,i be a discrete family of
subsets of X j , 1 ~ i ~ k, so that

(a) {U~,i}~=l covers Xj , k - nj times, for 1 ~ j ~ L.

(b) 8(U';',i) ~m~<XJ 0 for 1 ~j ~ L, and 1 ~ i ~ k.

Such families exist by Theorem 3. Set

Um,i = {o//l X 0lI2 X ... X 0lIL: OlIj E U~.i}' 1 ~ i ~ k, m = 1,2,....

From (a) and (b) it follows that

(i) {Um,i}~~l cover X k - n = [kI2] + 1 times for each m = 1,2,... ,

(ii) 8(Um •i ) ~m~<XJ 0 for 1 ~ i ~ k.

By Lemma 2 there exists a subsequence {mr}~l of the integers, and
functions {!fidL in C(Xj) so that epi(Xl, X2,... , XL) = L~=l !fiiiXj) E C(X)
separates Um"i for all r = 1,2,... and 1 ~ i ~ k. (We apply Lemma 2 for
i = 1 first to get {Tu}f~l and set !fil.j = AjTU' epl(Xl, X2 ,... , XL) =
L~=l !fiu(X;) separates Um,l fo1' infinitely many m's, and we can apply
Lemma 2 again with i = 2 on this subsequence to get {!fi2,j}f=l and so on.)

By Lemma 1 {epi}~=l separates the Borel measures on X, and the theorem
follows from Theorem 1. For II just apply the second part of Lemma 2. I

Remarks. The number 2n + 1 in both Kolmogorov's and Ostrand's
theorems cannot be reduced, at least not for n = 2, 3,4 (see [11] and [12]).

As remarked after the proof of Lemma 2, the functions !fii in Kolmogorov's
theorem can be chosen in Lip~(I), ex < 1. Fridman [4] proved that the !fi;'s
can even be Lip 1 functions. (See also Kahane [14] for a short proof.)
However, the l/;;'s cannot be chosen to be continuously differentiable, as
proved by Vituskin and Henkin [13], and Kaufman [7].

Demko [I] recently extended Kolmogorov's theorem to bounded con
tinuous functions on Rn, while Doss [2] proved that addition can be replaced
by multiplication in this theorem.
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