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In this note we present relatively short and simple proofs for some theorems
concerning superpositions of functions. We prove in particular the well known
theorem of Kolmogorov [8], and its generalization due to Ostrand {10].

Our main observation is that by combining a general duality argument of
functional analysis with the ideas introduced by Lorentz [9] and Hedberg [5],
we obtain a better understanding of the nature of these theorems, and can
avoid some of the difficulties which arose in former proofs.

We use the notation of [3]. C(X) is the Banach space of real valued
continuous functions on the compact metric space X, with the norm
1l = Supgex | f(x)l. We identify the dual C(X)* of C(X) with the space of
real regular Borel measures on X with the total variation as norm. p*
(resp. u~) denotes the positive (resp. negative) part of the real measure p,
and | p| = u* + p~. Clearly

Tell=ltpll=p"X)+ p(X). (N

If ¢ is a continuous function which maps X onto some (compact metric)
space Y, and p € C(X)*, then p o ¢ is the element of C(Y)* defined by

po (V) = we(V), VY. @

We denote the interval [0, 1] by 7, the » dimensional cube by /*, and the
circle by T. dim X is the covering dimension of X,

DEerFINITION 1. Let X be a compact metric space. Let F be a family of
continuous functions on X. We say that F uniformly separates the Borel
measures on X if there exists a constant A, 0 << A < 1, such that for each
peCX)* | pe @l = Al pli for some ¢ €F.

Let us say a word about the intuitive meaning of this concept: if F uniformly
separates the Borel measures on X, and H; , H, are disjoint closed subsets of
X, then for some ¢ € F the tutersection ¢[H,] N ¢[H,] is “not too large,”
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where “not too large” depends on A, and on a measure p in C(X)* such that
H,, H, are the supports of u*, u~ respectively. In particular a family of
functions which uniformly separates Borel measures, separates points.
(Given x, # x, in X, apply the definition to p = 8, — &, .) The converse is
false: let X = I?, let F = {¢,, @} Where @i(x, ) = x and @,(x, y) = ».
Clearly F separates points, but for p = 8¢.q + 80,1 — 8.0 — 8,00 We
have| || = 4,and|| po ¢;|| = 0,i = 1, 2.i.e. Fdoes not uniformly separate
Borel measures. See [12] where this concept as well as related topics are
studied.

The connection between uniform separation and superpositions is given
in the following.

THEOREM 1. Let F = {@,}}_, be a finite family of continuous functions on a
compact metric space X, with o [X] = Y;, 1 < i < k. The family F uniformly
separates the Borel measures on X if and only if each f € C(X) can be represented
as

£6) = T &) ©

with g, e C(Yy), 1 <i<k.

Proof. Let Y denote the disjoint union of the Y;’s, 1 << i <C k. Consider
the bounded linear operator S: C(Y) — C(X) defined by

Sg(x) = Y g(pix), geC(Y), xeX. )

i=1

A routine check shows that the adjoint S* of S acts according to the formula

S*p=2 pows,  peC) Q)
and that
k
[8*ull =3 Il wo @il (6)

i=1

Each fe C(X) admits a representation of the form (3)if and only if S maps
C(Y) onto C(X). This occurs if and only if $* is an isomorphism into, i.e.,
there exists a constant o > 0 such that || S*p || = «| | for all pe C(X)*
(see [3D.

By 6 this is equivalent to F being uniformly separating Borel measures
onX. |
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A very simple illustration of an application of Theorem 1 is

THEOREM 2. There exists three real valued analytic functions {@,}3_, on the
circle T, such that each f€ C(T) can be represented as f(t) = Yo_, gi(pAD)
with g, € C(I).

(See Kahane [6] for a similar result. The number three in Theorem 2 cannot be
reduced as proved in [11].)

Proof. We realize T as the interval [ with its endpoints identified. Set
L =04, 5L=((%, I;=(1) (Openintervals) @)

and
J,=T\,, i=17223 ®

Let ¢,,7 = 1, 2, 3 be any three elements of C(T') such that ¢,/J; is one to
one. (¢;/J; is the restriction of ¢, to J; ; the same notation will be used later
for measures.) We claim that F = {¢,}?_; uniformly separates the Borel
measures on T, with A = §.

Indeed, let u € C(T)* be of norm one. Then | u | is a probability measure,
and it is easily seen that

i“"(m:iflhd‘”l:f(gllh)dl#l>2 ©)

-

since ZL | ,i(t) =2 for all teT. (1, is the indicator function of J;.) 1
follows that | p | (Jio) > g forsome iy, 1 < iy < 3. Thus,|| o (9"1'0/]%)” =
since @; is one to one on J; .

Clearly | p | (I,-o) < 4, hence, the mass of p which is outside J;, » can reduce
the norm of p (‘Pio/Jio) by at most 4, i.e.,

“@[ro

1

1. (10)

Thus F uniformly separates the Borel measures on 7 with A = }, and the
theorem follows from Theorem 1. {

HLO (Pioii = ‘1 ,‘J’O((Pio/']iu)“ — ‘ 12 | (11'0) = % - %

The proofs of the theorems of Kolmogorov and Ostrand require more
machinery. We start with some more definitions.

DerFiniTION 2. (a) A family U of subsets of a metric space X is said to be
discrete if its elements have mutually disjoint closures.
(b) 8(U) is supgy diameter %.
(¢) If ¢ is a function on X, we say that ¢ separates U if for each
Uy, Use U, o) N @l = <.
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(d If U,, Us,..., Uy are k families of subsets of X we say that {U,};_,
covers the set X n times (n < k) if each x € X is an element in some member
of U, for at least n values of i.

The following are trivial observations. (We do not distinguish between U;
and the union of its elements.)

PROPOSITION 1. Let X be a set, and let {U;}%_, be k families of subsets of X.
The statements (a), (b), (c), (d) are equivalent and imply (e).

(a) {UJE, covers X n times.

(b) Each k — n -+ 1 of the families {U)¥_, cover X.

(©) ZL ly(x) = n for all x e X.

(d) Z;;l w(Uy) = n for all probability measures p on X.

(e) For each probability measure p on X there exists some iy , 0 < iy < k,
so that ;u.(Uio) = nfk.

LEMMA 1. Let X be a compact metric space, and let F = {@}%, be a
Jamily of continuous functions on X. If for each € > 0, there exists k finite
discrete families U, , U, ,..., Uy, of subsets of X so that

() (U}, covers X [%] + 1 times,

() SU) <e1<i<k,

(iii) ; separates U;, 1 < i < k.

Then F uniformly separates the Borel measures on X with A = 1/k.

Proof. We wish to show that for each u e C(X)*, || o @, || = (1/k) || ]
for some ¢; € F. The measures p with u* and g~ having disjoint supports are
norm dense in C(X)*, (by regularity) and therefore we may consider such
measures only.

So let u e C(X)* be of norm one, and with supp u* N supp u~ = &. Let
€ = d(supp pt, supp p-), and let {U;}%_; be the families of sets corresponding
to e.

It follows that a member of U;, 1 </ < k cannot intersect both supp p*
and supp p*.

By (i) and Proposition 1(e), there exists 1 < i, < k so that

AR N TR AL I S S

=
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Now, since members of U, intersect at most one of the sets supp u* and
supp p~, and since by (iii), ®;, separates U, , it follows from (11) that

; , 1 1
e (?io/Uz'o)F’ = 3 + % (12)

Clearly by (11)

1
% (13)

b =

| wl (XN\Uy) <

Hence, by the same reasoning as in the proof of Theorem 2, we get from
(12) and (13) that

lwe @ill 21 o (@i Ul — | p | (X\Uy)

1,1 1 1y 1
it W) =% 14
i.e., F uniformly separates the Borel measures on X with A = 1/k. [

By Proposition 1, condition (i) of Lemma 1 is equivalent to the following:
any [(k + 1)/2] of the families U; cover X. Such a cover by [(k + 1)/2]
families U; is of order [k/2] (i.e., at most [k/2] 4+ 1 of its elements intersect).
It follows that the existence of families {U,}*_, with (i) and (ii) of Lemma 1
for each € > Oimplies that dim X <C [k/2]. Ostrand [10] proved the following
converse assertion.

THEOREM 3. Let X be an n-dimensional compact metric space, let k >
n+1,ande > 0.

There exist k discrete families {U,}s_, of subsets of X which cover X k — n
times, so that 8(U,)) < e, 1 <i < k.

Our next lemma proves the existence of functions {g;}r_; as in the assump-
tion of Lemma 1, if we are given a suitable sequence of nice coverings of X.
We shall do this in a more general setting which will be used later on.

LemMMA 2. Let X;, j=1,2,...,L be compact metric spaces and let
X=X, XXy X - XX.

For each 1 <j < L let {U,7}y_, be a sequence of discrete families of
subsets of X; with 8(U,,7) — s 0.

Let U,,, m = 1, 2,... be the family of subsets of X defined by

Uy = {U' X U2 X - X UL: W € U, (15)
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and let A, Ay ,..., A\, be reals independent over the rationals. There exist
functions 7; € C(X;), 1 < j < L such that the function ¢ € C(X) defined by

L
(p(xl s Xa 5eeny XL) = Z AJ'TJ'(XJ')
j=1

separates U, for infinitely many m’s.
If X, =X, ==X, and U,} = U,2% = - = U," then one can also
take Ty = Tg == "' = Tp.

Proof. Set C = C(Xy) x C(X,) x -+ x C(X;) with the norm

|| (Tl > T2 5eeny TL)“ maxlg]‘gL H Ty ”

For each integer £ > 1 let A4, C C be defined by

L
At’ il (Tl s T2 5eeey TL): (P(xl » Xg yeees xL) = Z A]'Tf(xi)
j=1

separates U,, for some m = /. (16)

We claim that A4, is open and dense in C for all £ > 1.

Ay is open: Let v = (74, 73,..., 7 ) € Ay, 1.6. ¢ = Zf=1/\,-'r,-(x,-) separates U, for
some m = £,

€ = infy 7.y d(p[%], 7)) is positive since U, is discrete. Let 8 >0
be so small that || — 7| < 8 implies || ¢ — ¢ |lccy < €/2 where
QX1 , Xg yeeey Xp) = Zf-;l ATix;) € C(X). Then ¢ separates U, too, i.e.,
T €A,.

A, is dense: Let y = (3, iy 5., 1) € C and € > 0 be given.

We shall construct 1€ 4, with |7 — ¢ < e.

Let m = £ be so big that the oscillation of ¢, on elements of U,/ is smaller
than € for all 1 < j < L. Such an m exists since 8(U,,Y) —pe0 0.

Let 7; be defined as follows: 7; is constant on elements of U, these
constants being distinct rationals so that || 7,/U,,7 — ,/U,,7 || < e. This being
possible by the above choice of m, we extend 7; to the whole of X; by Tietze’s
theorem so that || 7; — ;| < e. Then clearly | 7 — || < ¢ where = =
(715 T2 5., 7). We claim that 7€ A4,. Indeed, let # = %' X U? X -+ X
Ut e U, , with %€ U, and 7;[%’] = r;—the rational value of 7; on the
element %’ of U, .

If @(xy, x50 X1) = Z,.L=1 Am{(x;), then ¢ attains the constant value
> o1 Ajr; on %, But all the reals Zle A;r; are distinct, since the A;’s are inde-
pendent over the rationals, and the values of 7; on members of U, are distinct
rationals. It follows that ¢ separates U,, , i.e., 7€ 4, .

Let A = ();_; A, . By the Baire category theorem A is a dense G, in C, and
each 7 = (7y, 72,..., 7) € 4 has the desired property.



366 Y. STERNFELD

Ifx, =X, == X,and U,* = U,? = -+ = U,* the same arguments
can be applied with the sets 4, C C(Xy), 4, = {r € C(X}): p(x1, Xg 5ouy X1} =
Z i1 Ay7(x;) separates U,, for some m > ¢}. This proves Lemma 2. l

Remark. If X, = X, = -+ = X, = I, (i.e., X = I") and the elements of
U, = U,? = -+ = U," are intervals then one can extend the =,’s from U,,’
to I by letting them being linear on the intervals in the complement of U,7,
provided the length of these complementing intervals tends to 0 together
with the intervals in U,,’. (This will be the case in our proof of Kolmogorov’s
theorem.)

Moreover: C(X;) = C(I) can be replaced in this case by Lip,(1),0 < « < 1,
i.e., the 7;’s can be chosen to be (nondecreasing) Lip o functions. (See [5].)

KOLMOGOROV’S THEOREM. Let n > 2. There exist functions §;, i =1,
2,...,2n + 1in C(I) and reals A, , A, ..., A, such that each fe C(I"*) can be
represented as

2n+1

f e %) = 3 8( 5 ). seeCm
i=1

Proof. Set k =2n + 1. For each m, consider a partition of I into m
intervals of length 1/m each, indexed from 1 to m by the natural order (i.e.,
the first is [0, 1/m] and the last [(m — 1)/m, 1]). Let V,,,;, 1 << i < k be the
family of intervals generated by removing from I those intervals of the above
partition with index congruent to i mod k. (All intervals in V,, ; , except the
two extreme ones, are of length (k — 1)/m, and for each m, {V,, }*_, covers I
k — 1 times.)

Set Up, ={Lh x L x - X L:LeV, 3}, 1 <i<k Itiseasy to check
that {U,, ;}+_, covers I", k — n = [k/2] -+ 1 times.

Let {A,}%_; independent over the rationals (e.g., A; = ¢’-1). By Lemma 2
there exists functions ¢, in C(J), 1 < i < k and a subsequence {m,},>, of the
integers such that ¢,(x;, X5 ,..., xn) = Y1 Ahilx;) € C(I™) separates Un, i
forr = 1, 2,.... By Lemma 1, {p;}¥_, uniformly separates the Borel measures
on I*, and the theorem follows from Theorem 1. [|

OSTRAND’S THEOREM. Let X = X, X X, X - X X where X, is a
compact metric space of dimensionn; , 1 <j < L. Letn = Z, 11 .

1. There exists functions {; )22, 1 < j < L in C(X;) such that each
fe C(X) can be represented as

2n+1

fr ) = 3 gz(z b, ,<x]>) with  g:€ C(R).

II. If X, =X,= = X, then one can take i;; = A, where
{A}Ey are reals independent over the rationals.



SUPERPOSITIONS OF FUNCTIONS 367

Proof. Setk = 2n -+ 1. For each m > 1 let U}, ; be a discrete family of
subsets of X;, 1 <{i < k, so that

(a) {Uj )iy covers X;, k — n, times, for 1 <j < L.
(b) 8(UL,) msw Ofor1 <j< Lyand 1 <i<k.

Such families exist by Theorem 3. Set
Upi ={¥, X Uy X~ X UpU;€ UL}, 1 <i<k, m=12,..

From (a) and (b) it follows that
() {U,.ti, cover X k —n = [k/2] + 1 times for each m = 1,2,...,
(i) S(Up.i) —>moe Ofor 1 < i < k.

By Lemma 2 there exists a subsequence {m,}i, of the integers, and
functions {i, ;¥ , in C(X;) so that @,(x;, Xy ,..., X;) = Z,_I ¥ (%) € C(X)
separates U,, ; for all r = 1,2,... and 1 < < k. (We apply Lemma 2 for
1— 1 first to get {m )y and set iy ; = N1y, @i(X1, Xo s, Xp) =
21_1 . 5(x;) separates U, , for infinitely many m’s, and we can apply
Lemma 2 again with i = 2 on this subsequence to get {4, ;}/, and so on.)

By Lemma 1 {¢;}i_, separates the Borel measures on X, and the theorem
follows from Theorem 1. For II just apply the second part of Lemma 2. |

Remarks. The number 2n 4+ 1 in both Kolmogorov’s and Ostrand’s
theorems cannot be reduced, at least not for n = 2, 3, 4 (see [11] and [12]).

As remarked after the proof of Lemma 2, the functions #; in Kolmogorov’s
theorem can be chosen in Lip,(I), « < 1. Fridman [4] proved that the s
can even be Lip 1 functions. (See also Kahane [14] for a short proof.)
However, the i,’s cannot be chosen to be continuously differentiable, as
proved by Vituskin and Henkin [13], and Kaufman [7].

Demko [1] recently extended Kolmogorov’s theorem to bounded con-
tinuous functions on R”, while Doss [2] proved that addition can be replaced
by multiplication in this theorem.
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